33 resultados para Galacto-oligossacarídeos (gos)

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is recognised that ageing induces various changes to the human colonic microbiota. Most relevant is a reduction in bifidobacteria, which is a health-positive genus. Prebiotics, such as galacto-oligosaccharides (GOS), are dietary ingredients that selectively fortify beneficial gut microbial groups. Therefore, they have the potential to reverse the age-related decline in bifidobacteria and modulate associated health parameters. We assessed the effect of GOS mixture (Bimuno (B-GOS)) on gut microbiota, markers of immune function and metabolites in forty elderly (age 65-80 years) volunteers in a randomised, double-blind, placebo (maltodextrin)-controlled, cross-over study. The intervention periods consisted of 10 weeks with daily doses of 5·5 g/d with a 4-week washout period in between. Blood and faecal samples were collected for the analyses of faecal bacterial populations and immune and metabolic biomarkers. B-GOS consumption led to significant increases in bacteroides and bifidobacteria, the latter correlating with increased lactic acid in faecal waters. Higher IL-10, IL-8, natural killer cell activity and C-reactive protein and lower IL-1β were also observed. Administration of B-GOS to elderly volunteers may be useful in positively affecting the microbiota and some markers of immune function associated with ageing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through modulation of faecal microbiota, fermentation characteristics and faecal water genotoxicity. A total of thirty-seven volunteers completed this randomised, double-blind, placebo-controlled crossover trial. The treatments – juice containing 4 g GOS and placebo – were consumed twice daily for 3 weeks, preceded by 3-week washout periods. To study the effect of GOS on different large bowel regions, three-stage continuous culture systems were conducted in parallel using faecal inocula from three volunteers. Faecal samples were microbially enumerated by quantitative PCR. In vivo, following GOS intervention, bifidobacteria were significantly more compared to post-placebo (P = 0·02). Accordingly, GOS supplementation had a bifidogenic effect in all in vitro system vessels. Furthermore, in vessel 1 (similar to the proximal colon), GOS fermentation led to more lactobacilli and increased butyrate. No changes in faecal water genotoxicity were observed. To conclude, GOS supplementation significantly increased bifidobacteria numbers in vivo and in vitro. Increased butyrate production and elevated bifidobacteria numbers may constitute beneficial modulation of the gut microbiota in a maturing population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stirred, pH-controlled anaerobic batch cultures were used to investigate the in vitro effects of galacto-oligosaccharides (GOS) alone or combined with the probiotic Bifidobacterium bifidum 02 450B on the canine faecal microbiota of three different donors. GOS supported the growth of B. bifidum 02 450B throughout the fermentation. Quantitative analysis of bacterial populations by FISH revealed significant increases in Bifidobacterium spp. counts (Bif164) and a concomitant decrease in Clostridium histolyticum counts (Chis150) in the synbiotic-containing vessels compared with the controls and GOS vessels. Vessels containing probiotic alone displayed a transient increase in Bifidobacterium spp. and a transient decrease in Bacteroides spp. Denaturing gradient gel electrophoresis analysis showed that GOS elicited similar alterations in the microbial profiles of the three in vitro runs. However, the synbiotic did not alter the microbial diversity of the three runs to the same extent as GOS alone. Nested PCR using universal primers, followed by bifidobacterial-specific primers illustrated low bifidobacterial diversity in dogs, which did not change drastically during the in vitro fermentation. This study illustrates that the canine faecal microbiota can be modulated in vitro by GOS supplementation and that GOS can sustain the growth of B. bifidum 02 450B in a synbiotic combination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Probiotic bacteria have gained popularity as a defence against disorders of the bowel. However, the acid sensitivity of these cells results in a loss of viability during gastric passage and, consequently, a loss of efficacy. Probiotic treatment can be supplemented using ‘prebiotics’, which are carbohydrates fermented specifically by probiotic cells in the body. This combination of probiotic and prebiotic is termed a ‘synbiotic’. Within this article a multiparticulate dosage form has been developed, consisting of poly(d,l-lactic-co-glycolic acid) (PLGA) microcapsules containing prebiotic Bimuno™ incorporated into an alginate–chitosan matrix containing probiotic Bifidobacterium breve. The aim of this multiparticulate was that, in vivo, the probiotic would be protected against gastric acid and the release of the prebiotic would occur in the distal colon. After microscopic investigation, this synbiotic multiparticulate was shown to control the release of the prebiotic during in vitro gastrointestinal transit, with the release of galacto-oligosaccharides (GOS) initially occurred over 6 h, but with a triphasic release pattern giving further release over 288 h. Encapsulation of B. breve in multiparticulates resulted in a survival of 8.0 ± 0.3 log CFU/mL cells in acid, an improvement over alginate–chitosan microencapsulation of 1.4 log CFU/mL. This was attributed to increased hydrophobicity by the incorporation of PLGA particles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Objectives: Prebiotics have attracted interest for their ability to positively affect the colonic microbiota composition, thus increasing resistance to infection and diarrhoeal disease. This study assessed the effectiveness of a prebiotic galacto-oligosaccharide mixture (B-GOS) on the severity and/or incidence of travellers' diarrhoea (TD) in healthy subjects. Subjects/Methods: The study was a placebo-controlled, randomized, double blind of parallel design in 159 healthy volunteers, who travelled for minimum of 2 weeks to a country of low or high risk for TD. The investigational product was the B-GOS and the placebo was maltodextrin. Volunteers were randomized into groups with an equal probability of receiving either the prebiotic or placebo. The protocol comprised of a 1 week pre-holiday period recording bowel habit, while receiving intervention and the holiday period. Bowel habit included the number of bowel movements and average consistency of the stools as well as occurrence of abdominal discomfort, flatulence, bloating or vomiting. A clinical report was completed in the case of diarrhoeal incidence. A post-study questionnaire was also completed by all subjects on their return. Results: Results showed significant differences between the B-GOS and the placebo group in the incidence (P<0.05) and duration (P<0.05) of TD. Similar findings occurred on abdominal pain (P<0.05) and the overall quality of life assessment (P<0.05). Conclusions: Consumption of the tested galacto-oligosaccharide mixture showed significant potential in preventing the incidence and symptoms of TD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Aging is associated with reduced numbers of beneficial colonic bifidobacteria and impaired immunity. Galactooligosaccharides (GOSs) stimulate the growth of bifidobacteria in younger adults, but little is known about their effects in the elderly and their immunomodulatory capacity. Objective: We assessed the effect of a prebiotic GOS mixture (B-GOS) on immune function and fecal microflora composition in healthy elderly subjects. Design: In a double-blind, placebo-controlled, crossover study, 44 elderly subjects were randomly assigned to receive either a placebo or the B-GOS treatment (5.5 g/d). Subjects consumed the treatments for 10 wk, and then went through a 4-wk washout period, before switching to the other treatment for the final 10 wk. Blood and fecal samples were collected at the beginning, middle (5 wk), and end of the test period. Predominant bacterial groups were quantified, and phagocytosis, natural killer (NK) cell activity, cytokine production, plasma cholesterol, and HDL cholesterol were measured. Results: B-GOS significantly increased the numbers of beneficial bacteria, especially bifidobacteria, at the expense of less beneficial groups compared with the baseline and placebo. Significant increases in phagocytosis, NK cell activity, and the production of antiinflammatory cytokine interleukin-10 (IL-10) and significant reduction in the production of proinflammatory cytokines (IL-6, IL-1 beta , and tumor necrosis factor-alpha) were also observed. B-GOS exerted no effects on total cholesterol or HDL-cholesterol production, however. Conclusions: B-GOS administration to healthy elderly persons resulted in positive effects on both the microflora composition and the immune response. Therefore, B-GOS may be a useful dietary candidate for the enhancement of gastrointestinal health and immune function in elderly persons. Am J Clin Nutr 2008; 88: 1438-46.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To assess the suitability of bifidobacteria for inclusion in synbiotic products on the basis of carbohydrate preference, acid and bile tolerance. Methods and Results: Five strains of Bifidobacterium were analysed for their carbohydrate preference from 12 substrates. Maximum growth rates were used to compare substrate preferences. Galacto-oligosaccharides and isomalto-oligosaccharides were well utilized by all the test species. Most bacteria tested could also utilize at least one type of fructan molecule. To determine transit tolerance of potentially probiotic bifidobacteria, acid and bile resistance was tested. A wide range acid resistance was found. Bile tolerance also varied. Conclusions: GOS and IMO were generally well utilized by the tested species. Other substrates were used to different degrees by the different species. Most bifidobacteria are poorly resistant to strongly acidic conditions with the exception of Bifidobacterium lactis Bb12. Bile tolerances were widely variable and it was shown that caution should be exercised when using colorimetric methods to assess bile tolerance. Significance and Impact of Study: The study allows the comparison of the properties of bifidobacteria, allowing a cost effective screen for the best species for use in synbiotic products to allow better survival and efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely reported that cholera toxin (Ctx) remains a significant cause of gastrointestinal disease globally, particularly in developing countries where access to clean drinking water is at a premium. Vaccines are prohibitively expensive and have shown only short-term protection. Consequently, there is scope for continued development of novel treatment strategies. One example is the use of galactooligosaccharides (GOS) as functional mimics for the cell-surface toxin receptor (GM1). In this study, GOS fractions were fractionated using cation exchange chromatography followed by structural characterization using a combination of hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) such that their molecular weight profiles were known. Each profile was correlated against biological activity measured using a competitive inhibitory GM1-linked ELISA. GOS fractions containing > 5% hexasaccharides (DP6) exhibited > 90% binding, with EC50 values between 29.27 and 56.04 mg/mL. Inhibition by GOS DP6, was dose dependent, with an EC50 value of 5.10 mg/mL (5.15 mu M MW of 990 Da). In removing low molecular weight carbohydrates that do possess prebiotic, nutraceutical, and/or biological properties and concentrating GOS DP5 and/or DP6, Ctx antiadhesive activity per unit of (dry) weight was improved. This could be advantageous in the manufacture of pharmaceutical or nutraceutical formulations for the treatment or prevention of an acute or chronic disease associated with or caused by the adhesion and/or uptake of a Ctx or HLT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initial bacterial colonization, including colonization with health-positive bacteria, such as bifidobacteria and lactobacilli, is necessary for the normal development of intestinal innate and adaptive immune defenses. The predominance of beneficial bacteria in the gut microflora of breast-fed infants is thought to be, at least in part, supported by the metabolism of the complex mixture of oligosaccharides present in human breast milk, and a more adult-type intestinal microbiota is found in formula-fed infants. Inadequate gut colonization, dysbiosis, may lead to an increased risk of infectious, allergic, and autoimmune disorders later in life. The addition of appropriate amounts of selected prebiotics to infant formulas can enhance the growth of bifidobacteria or lactobacilli in the colonic microbiota and, thereby, might produce beneficial effects. Among the substrates considered as prebiotics are the oligosaccharides inulin, fructo-oligosaccharides, galacto-oligosaccharides, and lactulose. There are some reports that such prebiotics have beneficial effects on various markers of health. For example, primary prevention trials in infants have provided promising data on prevention of infections and atopic dermatitis. Additional well-designed prospective clinical trials and mechanistic studies are needed to advance knowledge further in this promising field. (J Pediatr 2009;155:S61-70).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactooligosaccharides (GOS) are well-known prebiotic ingredients which can form the basis of new functional dairy products. In this work, the production and characterization of glycated beta-lactoglobulin beta-LG) with prebiotic GOS through the Maillard reaction under controlled conditions (a(w) = 0.44, 40 degrees C for 23 days) have been studied. The extent of glycation of beta-LG was evaluated by formation of furosine which progressively increased with storage for up to 16 days, suggesting that the formation of Amadori compounds prevailed over their degradation. RP-HPLC-UV, SIDS-PAGE, and IEF profiles of beta-LG were modified as a consequence of its glycation. MALDI-ToF mass spectra of glycated beta-LG showed an increase of up to similar to 21% in its average molecular mass after storage for 23 days. Moreover, a decrease in unconjugated GOS (one tri-, two tetra-, and one pentasaccharide) was observed by HPAEC-PAD upon glycation. These results were confirmed by ESI MS. The stability of the glycated beta-LG to in vitro simulated gastrointestinal digestion was also described and compared with that of the unglycated protein. The yield of digestion products of glycated beta-LG was lower than that observed for the unglycated protein. The conjugation of prebiotic carbohydrates to stable proteins and peptides could open new routes of research in the study of functional ingredients.